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... ,.... Dear David, 

I am delighted that you have agreed to work with us on the Indicators project . At this point, we 
have asked you to do the following work: 

1. Cull GSS, SASS, and possible other data sets (e.g. NLSY) for data on Jewish education/ 
Jewish identity. 

2. Refine (if possible) the earlier CUE report-- essentially, look at the data from different 
perspectives (e.g . adjusted means analysis). 

3. Produce a report that summarizes the findings of the data review and demonstrates what can 
be learned from an indicators study in order to make the case for future such studies. 

This work is to be done by the middle of August . At that point we will re-group with our 
advisory committee and decide how to go forward. If we continue on the track set at our 
February meeting, the next steps would include: 

• Producing a second report based on the suggestions you make based on your work in Step 1 
above. 

_,..., • Create a dissemination plan for the first report that you create. 

-·-

Based on the amount of work that you and I estimated, we are assuming that, between now and 
mid-August, you will work approximately JO days at the rate of $500 a day. At that point, we 
will estimate how much time it will talce to do the second report. 

We are looking forward to working together. 

Sincerely, 

e~ 
Senior Education Officer 

C.C. Adam Gamoran 
Mark Gurvis 
Annette Hochstein 

15 Eas t 26th Stree t, New York, NY • J 0010 -1579 • Phone (212) 532-2360 • Fl'lx (212) 532-2646 

. ... 

... . ' 
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Work: 

School of Education 
University of Delaware 
Newark, DE. 19716 
Voice Mail: 302-831-8696 
Fax:302-831-4445 
Internet: dkaplan @ udel.edu 

Vita 

David Kaplan 

D. Kaplan, Vita 

Home: 

727 Colgate Lane 
Newark, DE 19711 
Ph: 302-733-0512 

Web page: http://www.udel.edu/dkaplan 

1987 

1983 

1978 

Education 

Ph. D., Education, University of California, Los Angeles 
Major area: Educational Statistics and Psychometrics. 
Cognate area: Econometrics 
Minor area: Sociology of Education 

M. A., Education, University of California, Los Angeles. 

B. A. (Cum Laude), Psychology, California State University, 
Northridge. 

1 

Present Position Professor, School of Education and Department of Psychology, 
University of Delaware. Associate Profes or, 1992- 1998; Assistant 
Professor, 1987-1992, University of Delaware. 

Refereed Journal Publications 
In press 

Kaplan, D. On the extension of the propensity score adjustment method for the analysis of group 
differences in MIMIC models. Multivariate Behavioral Research. 
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1999 

Kaplan, D. & Ferguson, A. J. On the utilization of sample weights in latent variable models. Structural 
Equation Modeling, 6, 305-321. 

1998 

Kaplan, D., & George, R. Evaluating latent variable growth models through ex post simulation. Joumal 
of Educational and Behavioral Statistics, 23, 216-235. 

George, R., & Kaplan, D. A structural model of parent and teacher influences on the science attitudes of 
eighth graders: Evidence from NELS:88. Science Education, 82, 3-17. 

1997 

Kaplan, D. & Elliott. P. R. A model-based approach to validating education indicators using multilevel 
structural equation modeling. Joumal of Educational and Behavioral Statistics, 22, 323-348. 

Kaplan, D., & Elliott, P. R. A didactic example of multilevel structural equation modeling applicable to 
the study of organizations. Structural Equation Modeling: A Multidisciplinary Joumal, 4, 1-24. 

1995 

Kaplan, D. The impact of B:CB-spiralling induced missing data patterns on goodness-of-fit tests in factor 
analysis. Joumal of Educational and Behavioral Statistics, 20, 69-82. 

Kaplan, D., & George, R. A study of the power associated with testing factor mean differences under 
violations of factorial invariance. Structural Equation Modeling: A Multidisciplinary Joumal, 2, 101-
118. 

1994 

Kaplan, D., & Venezky, R. L. Literacy and voting behavior; A bivariate probit model with sample 
selection. Social Science Research, 23, 350-367. 

Kaplan, D. Estimator conditioning diagnostics for covariance structure models. Sociological Methods 
and Research, 23, 200-229. 

1993 

Kaplan, D., & Wenger, R. N. Asymptotic independence and separability in covariance structure models: 
Implications for specification error, power, and model modification. Multivariate Behavioral Research, 
28, 483-498. 
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Fromme, K., Stroot, E. , & Kaplan, D. The comprehensive effects of alcohol: Development and 
psychometric assessment of a new expectancy questionnaire. Psychological Assessment: A Journal of 
Consulting and Clinical Psychology, 5, 19-26. 

1992 

Muthen, B., & Kaplan, D. A comparison of some methodologies for the factor analysis of non-normal 
Likert variables: A note on the size of the model. British Journal of Mathematical and Statistical 
Psychology, 45, 19-30. 

1991 

Kaplan, D. The behaviour of three weighted least squares estimators for structured means analysis with 
non-normal Likert variables. British Journal of Mathematical and Statistical Psychology, 44, 333-346. 

Kaplan, D. On the modification and predictive validity of covariance structure models. Quality and 
Quantity, 25, 307-314. 

1990 

Kaplan, D. Evaluation and modification of covariance structure models: A review and 
recommendation. Multivariate Behavioral Research, 25, 137-155. 

Kaplan, D. Rejoinder on evaluating and modifying covariance structure models. Multivariate 
Behavioral Research, 25, 197-204 

Kaplan, D. Contributions to structural modeling of mathematics achievement: Application of 
categorical variable structural equation methodology. International Journal of Educational Research, 
14, 175-192. 

Lapan, R. T., McGrath, E., & Kaplan, D. Factor structure of the Basic Interest Scales by gender across 
time. Journal of Counseling Psychology, 37, 216-222. 

1989 

Kaplan, D. Model modification in covariance structure analysis: Application of the expected parameter 
change statistic. Multivariate Behavioral Research, 24, 285-305. 

Kaplan, D. Power of the likelihood ratio test in multiple group confirmatory factor analysis under partial 
measurement invariance. Educational and Psychological Measurement, 49, 579-586. 

Kaplan, D. The problem of error rate inflation in covariance structure models. Educational and 
Psychological Measurement, 49, 333-337. 
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Kaplan, D. A study of the sampling variability and z-values of parameter estimates from misspecified 
structural equation models. Multivariate Behavioral Research, 24, 41-57. 

1988 

Kaplan, D. The impact of specification error on the estimation, testing, and improvement of structural 
equation models. Multivariate Behavioral Research, 23, 69-86. 

1987 

Muthen, B., Kaplan, D., & Hollis, M. On structural equation modeling with data that are not missing 
completely at random. Psychometrika, 51 , 431-462. 

1985 

Muthen, B., & Kaplan, D. A comparison of some methodologies for the factor analysis of non-normal 
Likert variables. British Journal of Mathematical and Statistical Psychology, 38, 17 1-189. 

Manuscripts Submitted for Publication 

Ferguson, A. J., & Kaplan, D. (1998). The influence of track placement and classroom context on self­
concept and locus-of-control: A propensity score analysis. Submitted to American Educational 
Research Journal. 

Book Chapters and Annual Volumes 

Venezky, R. L., & Kaplan, D . (1998). Literacy habits and political participation. In M. Cecil Smith 
(ed.), Literacy f or the 2F' Century. Westport, CN: Greenwood Publishing Group. 

Kaplan, D. (1998). Methods for multilevel data analysis. In. G. A. Marcoulides (ed.), Modem Methods 
for Business Research. Mahwah, NJ: Lawrence Erlbaum and Associates. 

Kaplan, D. (1996). An overview of concepts and issues in multilevel structural equation modeling. 
In H. Emste (ed.), Multilevel Analysis with Structural Equation Models. (pp. 1-18). Zurich, Switzerland: 
Department of Geography, Swiss Federal Institute of Technology (ETH). 

Kaplan, D. (1995). Statistical power in structural equation modeling. In R.H. Hoyle (ed.), Structural 
Equation Modeling: Concepts, Issues, and Applications (pp. 100-117). Newbury Park, CA: Sage 
Publications, Inc. 

Kaplan, D. (1992). Structural equation modeling. In M. C. Aikin (ed.), Encyclopedia of Educational 
Research 6th edition. New York: Macmillian. 
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Glutting, J . J. & Kaplan, D. (1990). Stanford-Binet Intelligence Scale: Fourth Edition: Making the case 
for reasonable interpretation . In C. R. Reynolds & R. W. Kamphaus (Eds.), Handbook of 
Psychological and Educational Assessment of Children: Volume J. Intelligence and Achievement. (pp. 
277-295). New York: The Guilford Press. 

Conference Proceedings and Technical Reports 

Kaplan, D. & Venezky, R. L. (1995). Literacy and voting behavior: A statistical analysis based on the 
1985 Young Adult Literacy Survey. NCAL Technical Report TR94-14. Philadelphia: National Center 
on Adult Literacy. 

Kaplan, D., & Elliott, P. R. ( 1994). A M ultilevel Structural Model of Science Achievement 
From an Indicator System Perspective: Implications for Educational Policy Analysis. Final Report to 
the AERA Grants Program Committee 

Kaplan, D.& Venezky, R. L. ( 1993). What can employers assume about the literacy skills of GED 
graduates? NCAL Technical Report TR93-5. Philadelphia: National Center on Adult Literacy. 

Kaplan, D. & Wenger, R. N. (1993). Asymptotic independence and separability in covariance structure 
models. In R. Steyer, K. Wender, & K. Widaman (Eds.), Psychometric Methodology: Proceedings of 
the 7th European Meeting of the Psychometric Society in Trier (pp. 203-208). Stutgaart and New York: 
Gustav Fischer Verlag. 

Kaplan, D. (1992). The Analysis of Adult Literacy Survey Data: Problems in Factor Analysis with BIB­
Spiralled Item Administration. NCAL Occasional Paper OP92-2. Philadelphia: National Center on 
Adult Literacy. 

Book Reviews 

Kaplan, D. (1994). [Review of Structural Equation Modeling with EQS and EQS/Windows: Basic 
Concepts, Applications, and Programming]. Applied Psychological Measurement., 18, 191-192. 

Kaplan, D. (1993). [Review of Testing Structural Equation Models] . Structural Equation Modeling, 1, 
98-99. 

Kaplan, D. (1990). [Review of Multivariate Statistics: A Practical Approach]. Journal of Educational 
Statistics, 15, 171-174. 

Conference Presentations (refereed) 

1999 

Kaplan, D. Dynamic multipliers in single Level and multilevel models. Paper presented at the annual 
meeting of the American Educational Research Association. Montreal, Canada. 
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Kaplan, D. Statistical models applied to national data sets for infonning education policy. Symposium 
paper presented at the annual meeting of the American Educational Re earch Association. Montreal, 
Canada 

Kaplan, D. Discussant for AERA paper session. Topics in Structural Equation Modeling. Montreal, 
Canada 

1998 

Kaplan, D. On the assumptions associated with the application of the propensity score adjustment 
method to latent variable models. Paper presented the annual meeting of the American Educational 
Research Association. San Diego, CA. 

Kaplan, D. & Ferguson. On the utilization of sampling weights in latent variable models. Paper 
presented at the annual meeting of the American Educational Research Association. San Diego, CA. 

Kaplan, D. Discussant for AERA symposium. Modeling Non-Normal Data. San Diego, CA. 

1996 

Kaplan, D. Evaluating latent variable models using ex post simulation. Paper presented at the North 
American Meeting of the Psychometric Society, Banff, Alberta, Canada. 

Kaplan, D. On the extension of the propensity score adjustment method to covariance structure 
modeling. Paper presented at the annual meeting of the American Educational Re earch Association. 
New York, New York. 

Kaplan, D. Discussant for AERA paper session. lAtent Trait Model Fit. New York, New York. 

Kaplan, D., Zuzovsky, R., & Tamir, P. Parental involvement as perceived by Israeli pupils and their 
parents: A comparison of urban and kibbutz families. Symposium paper presented at the annual 
meeting of the American Educational Research Association. New York, New York. 

1995 

Kaplan, D. Literacy and voting behavior: A bivariate probit model with sample selection. Symposium 
paper presented at the annual meeting of the American Educational Research Association. San 
Francisco, CA. 

Kaplan, D. & Elliott, P. R. Centering problems in multilevel covariance structure modeling. Paper 
presented at the annual meeting of the American Educational Research Association. San Francisco, CA. 

Kaplan, D., & Elliott, P.R. Validating science education indicators through quantitative policy 
modeling: Evidence from NELS:88. Paper presented at the annual meeting of the American Educational 
Research Association. San Francisco, CA. 
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1994 

Kaplan, D., & Elliott, P.R. A policy guidance system for science achievement: An application of 
multilevel structural equation rnodeling. Paper presented at the annual meeting of the American 
Educational Research Association. New Orleans, Louisiana. 

7 

Kaplan, D., & Elliott, P. R. On the utility of multilevel structural equation modeling for building an 
educational policy guidance system. Paper presented at the annual meeting of the American 
Educational Research Association. New Orleans, Louisiana. 

Kaplan, D. Discussant for AERA paper session: Theoretical developments and educational 
applications of covariance structure analysis. New Orleans, Louisiana. 

1993 

Kaplan, D., & Wenger, R. N. Asymptotic independence and separability in covariance structure 
models: Implications for specification error, power, and model rrwdification. Paper presented at the 
meeting of the American Educational Research Association. Atlanta, Georgia 

1992 

Kaplan, D. Collinearity diagnostics for covariance structure models. Presented at the meeting of the 
Psychometric Society. Columbus, OH. 

Kaplan, D. Assessing the factor structure of data arising from balanced incomplete block spiralling 
designs. Presented at the meeting of the American Educational Research Association. San Francisco, 
CA. 

Kaplan, D. Collinearity diagnostics for covari.ance structure rrwdels. Presented at the meeting of the 
American Educational Research Association. San Francisco, CA. 

1991 

Kaplan, D., & Wenger, R. N. Asymptotic independence and separability in covariance structure 
models. Presented at the European meeting of the Psychometric Society. Trier, Germany. 

Kaplan, D., & Wenger, R. N. Asymptotic independence and separability in covariance structure 
models. Presented at the joint meeting of the Classification Society and Psychometric Society. New 
Brunswick, NJ. 

Kaplan, D. A Monte Carlo study of three weighted least squares estimators for structured means 
analysis with non-nonnal Like rt variables. Presented at the meeting of the American Educational 
Research Association. Chicago, IL 
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Kaplan, D. A study of the power associated with testing factor mean differences under violations of 
factorial invariance. Presented at the meeting of the American Educational Research Association. 
Chicago, JL. 

1990 

Kaplan, D. The behavior of three weighted least squares estimators for structured means analysis with 
non-nonnal Like rt variables. Presented at the meeting of the Psychometric Society. Princeton, NJ. 

Kaplan, D. A multistage method for studying mean structures in multiple group higher order 
confinnatory factor analysis. Presented at the meeting of the American Educational Research 
Association. Boston, MA. 

Kaplan, D. Alternative fit indices in covariance structure modeling: Just say whoa! Presented at the 
meeting of the American Educational Research Association. Boston, MA. 

Kaplan, D. Discussant for AERNNCME symposium: The assessment of test anxiety: Applications of 
covariance modeling to issues of construct validation. Boston, MA 

1989 

Kaplan, D. Power of the likelihood ratio test in multiple group confirmatory factor analysis under 
partial measurement invariance. Presented at the 6th European meeting of the Psychometric Society. 
Leuven, Belgium. 

Kaplan, D. On the modification and selection of competing covariance structure models. Presented at 
the meeting of the American Educational Research Association. San Francisco, CA. 

Kaplan, D. On the utility of classical statistical theory for building and evaluating covariance structure 
models. Presented at the meeting of the American Educational Research Association. San Francisco, 
CA. 

1988 

Kaplan, D. On specification error problems in covariance structure models. Presented at the meeting of 
the Psychometric Society. Los Angeles, CA. 

Kaplan, D. Modification of structural equation models: Application of the expected parameter change 
statistic. Presented at the meeting of the American Educational Research Association. New Orleans, 
LA. 

Kaplan, D. A Monte Carlo study of the sampling variability and z-values of parameter estimates for 
misspecified structural equation models. Presented at the meeting of the American Educational 
Research Association. New Orleans, LA. 
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1987 

Kaplan, D. The impact of specification error on the estimation, testing, and improvement of structural 
equation models. Presented at the meeting of the American Educational Re earch Association. 
Washington, D.C. 

1985 

Muthen, B., & Kaplan, D. On comparing item characteristic curve parameters across groups. 
Presented at the meeting of the American Educational Research Association. Chicago, IL. 

Muthen, B., Kaplan, D. , & Hollis, M. Latent variable modeling with missing data: Aurition in 
longitudinal studies. Presented at the meeting of the American Educational Research Association. 
Chicago, IL. 

1984 

Muthen, B., & Kaplan, D. A comparison of some methodologies for the factor analysis of non-normal 
Likert variables. Presented at the meeting of the American Educational Research Association. New 
Orleans, LA. 

Invited Addresses, Workshops and Conferences 
1999 

Kaplan, D. Invited Workshop on Hierarchical Linear Modeling. Presented to the School of Education, 
The Hebrew University of Jerusalem, Mount Scopus, Jerusalem, Israel. 

Kaplan, D. A Multilevel Model of the Effects of School Choice on Academic Achievement. Presented to 
the School of Education, Hebrew University of Jerusalem, Israel. 

1998 

Kaplan, D. Invited Workshop on Structural Equation Modeling. Presented to the School of Education, 
The Hebrew University of Jerusalem, Mount Scopus, Jerusalem, Israel. 

Kaplan, D. Elements of univariate and multivariate growth curve modeling. Presented to the School of 
Education, Hebrew University of Jerusalem, Israel, and the School of Education, Tel-Aviv University, 
Israel. 

Kaplan, D. On the extension of the propensity score adjustment method for the analysis of group 
differences in latent variable models. Presented at the 1998 meeting of the Israeli 
Sociological Association, Haifa, Israel. 
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1997 

Kaplan, D. On the use of latent variable growth nwdeling for monitoring change in multiple 
achievement domains. Department of Psychology, CoUege of William and Mary, Williamsburg, VA. 

Kaplan, D. Invited Workshop on Structural Equation Modeling. Presented to the Faculty of Social 
Sciences, The Hebrew University of Jerusalem, Mount Scopus, Jerusalem, Israel. 

Kaplan, D. Structural Equation Modeling. Invited AERA Graduate Student Seminar Roundtable. 
Annual meeting of the American Educational Research Association. Chicago, IL. 

Kaplan, D. Statistical modeling of hierarchy, structure, and temporality in complex organizations: An 
example from education. Presented to the Faculty of Social Sciences, The Hebrew University of 
Jerusalem, Mount Scopus, Jerusalem, Israel. 

1995 

Kaplan, D. Modeling science education indicators: An application of multilevel structural equation 
modeling. Presented to the Delaware Chapter of the American Statistical Association. Newark, DE. 

Kaplan, D. Recent developments and future directions in structural equation modeling. Presented to the 
Department of Statistics, Tel Aviv University, Tel Aviv, Israel. 

Kaplan, D . Modeling and validating science education indicators. Presented to the School of 
Education, Tel Aviv University, Tel-Aviv, Israel. 

Kaplan, D. Invited participant in Conference on Analytic Uses of Longitudinal Databases. Washington, 
DC. 

1994 

Kaplan, D. The utility of multilevel structural equation modeling for organizational policy studies: The 
case of education. Presented to the RMD Conference on Causal Modeling. Purdue University. 

1990 

Kaplan, D. Covariance structure nwdeling. Pre ented to the Delaware Chapter of the American 
Statistical Association. Newark, Delaware. 

Grants and A wards 

Jordan, N. & Kaplan, D. National Institute of Child Health and Human Development. A developmental 
study of mathematics disabilities. 1999-2002. Amount: $449,216 
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Kaplan, D. The Spencer Foundation. Developing longitudinal statistical nwdels f or education policy. 
1998-2001. Amount: $125,000. 

D. Archbald, Kaplan, D., & Y. Nakib. U.S. Department of Education, OERI National Institute on 
Educational Governance, Finance, Policy-Making and Management (OERI # R308F60010). A 
National Study of rhe Effects of School Choice on Achievement and Opportunity. 1996-1998. Amount: 
$419,926. 

Kaplan, D. National Science Foundation (# REC-9550472). Model-based indicator systems for 
informing science education policy. 1995-1997. Amount: $168,5 16. 

Venezky, R. L, & Kaplan, D. U.S. Department of Education, OERI National Center on Adult Literacy. 
Project title: Studies of adult literacy skills and assessment. 1994-1995. Amount: $260,000. 

Kaplan, D. University of Delaware International Programs and Special Sessions International Travel 
Grant. Project Title: Modeling School Effectiveness in Israeli Schools. 1995. Amount:: $2,200. 

Kaplan, D. American Educational Research Association (NSF# RED~9255347). Project title: 
Quantitative approaches to educational policy analysis utilizing multilevel structural equation 
modeling. 1993-1994. Amount: $ 15,0CX>. 

Kaplan, D. U.S. Department of Education, OERI National Center on Adult Literacy. Project title: 
Models of literacy and literacy related behaviors. 1991-1992. Amount: $53,242. 

Kaplan, D. University of Delaware General University Research Grant. Project title: Specification error 
issues in multiple populations. 1988-1989. Amount: $5,000. 

Professional Affiliations 

Member: 
American Educational Research Association (Division D and SIG/Educational Statisticians); Delaware 
Chapter of the American Statistical Association; National Council on Measurement in Education, 
Psychometric Society 

Professional Activities 

Editorial Boards: 
Educational and Psychological Measurement; Journal of Educational and Behavioral Statistics 
(including Management Committee); Journal of Educational Research; Mul tivariate Behavioral 
Research; Structural Equation Modeling 

Program Chair: 
American Educational Research Association (Division D, Section 3a), 1994. 
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Conference Session Chair: 
American Educational Research Association; Psychometric Society 

Ad hoc Reviewer: 
American Educational Research Journal; British Journal of M athematical and Statistical Psychology; 
Child Development; Computational Statistics and Data Analysis; Educational Evaluation and Policy 
Analysis; Journal of Educational Measurement; Journal of Educational Research; Journal of Studies on 
Alcohol; Measurement and Evaluation in Counseling and Development; Multivariate Behavioral 
Research; Organizational Research Methods; P ychological Bulletin; Psychometrika; Structural 
Equation Modeling; AERA Division D; AP A Division 5. 

Grant Reviewer: 
NAEP Data Reporting Grant Program; The Spencer Foundation 

University Activities 
University: 
Advisory Council on Graduate Studies 
Senate Committee on Graduate Studies 
Senate Committee on Instructional, Computing and Research Support Services 
University Statistical Laboratory Advisory Committee 
Jewish Studies Program Advisory Committee 

College: 
Acting Director, Center for Educational Leadership and Policy 
Dean's Research Advisory Council 
College Committee on Graduate Studies in Education 
Delaware Educational Research and Development Center Advisory Board 
Member: Center for Educational Leadership and Policy 

Department: 
Ad hoc Committee on Departmental Computer Networking 
Chair, Curriculum Committee 
Faculty Development Committee 
Promotion and Tenure Committee 
Search Committees (as needed) 
Coordinator of Doctoral Program in Measurement, Statistics, and Evaluation (rotating) 
Chairs Advisory Committee 
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A Model-Based Approach to Validating 
Education Indicators Using Multilevel Structural 

Equation Modeling 

David Kaplan 
University of Delaware 

Pamela R. Elliott 
University of Roches1er 

Keyword : educa1ion indica1ors. educa1ion policy. multilevel modeling. struciura/ equa­
tion modeling 

Th is article considers an approach ro \·alidaring rhe selection of education 
indicators by incorporating them into a multilevel structural model and using 
the estima1es f rom rhat model to engage in policy-relevant simularions. Mult i­
level structural equation modeling \\'as applied ro a subsample of rhe fi rst 
follow- up of rhe National Education Longitudinal Srudy of 19 ( a1io11al 
Cemcr for Education S1a1is1ics. 19 ) 10 demonsrra/e the potential of this 
approach. Focus of al/ention was 011 science education indicators. A \\'ilhin­
school model of science achie1·emen1 -.·as linked to a between-school model of 
the academic press of rhe chool. Separare estimation of these models re1•ealed 
adequate fi r to rhe data after minor modifications. The multilevel model also 
showed adequare fit 10 the data. Urili:.ing rhe reduced form of the full multile\'el 
model. predictil'e validity of the model was studied by gauging movements in 
1•arious ourcome indicators as a function of changes in poficy-relevan1 input 
indicators. The arricle closes wirh a discussion of rhe limirations of rhe pro­
posed modeling approach, the potential for future model development, and the 
implicarions of this approach for quantitative modeling wirhin the domain of 
education policy. 

Over the pasl everal year , national anention has focu ed on the educational 
performance of U.S. student - particularly in the areas of cience and math­
ematics. Indeed, the often lamented poor performance of U.S. tudents in 

This research was uppon ed by a grant from the American Educat ional Research 
Association. which receives funds for its grants program from the National Science 
Foundation and the at ional Center for Education Statistics (U.S. Depanment of Educa­
tion ) under SF Grant o. RED-9255347. Add itional work was supported by the 

ational Science Foundation under Gran t REC-9550472. Opinions reflect those of the 
au thors and do not necessarily reflect those of the granting agencies. 

The authors wish to acknowledge the valuable advice and assistance of Bengt Muthen 
and Ginger el on Goff. 
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science and mathemat ic compared to ou r key economic competi tors Germany 
and Japan led to the Education Goal 2000 legislmi n. which ·tated, am ng 
other things, that '·by the year 2000. U.S. student \ ill be firs t in the world in 
science and mathematics achievement' ( ational Education Goals Panel, 1994). 
Unfortunately, preciou few year · remain to implement the neces ary changes in 
our educatjonal system to meet this goal. Neverthele , if the United State i t 
succeed in attaining the target set b the National Education Goals Panel it i 
essential that policymaker have a clear understanding of salient determinant of 
sc ience and mathematic achieve ment. Pa t di cussion on the deve lopment of 
education indicator (see, e.g., Murnane & Raizcn, 1988: Shavel on McDon­
nell, & Oakes, 1989) represent an attempt at under tanding tho e determinants. 

When reviewing the extant literature on education indicator it is not uncom­
mon to find as a starting point , the theoretical mode l of schooling hown in 
Figure J. This model derive s from the organ izational paradigm in educational 
research (see, e.g., Oakes, 1986). 171ere are a number of features of the organi ­
zational model displayed in Figure I wonh con idering in light of the purpo e 
of this study. First, while thi model does not repre ent a casual path diagram in 
any formal sense, the organizational model does uggest potentially te table 
structural relation hips among the variab les compri ing the inputs, proce es, 
and outputs of schooling. Second, the model is inherently multilevel in form, 
with a subset of the inputs and processes occurring at higher levels of the 
educational system-for example, teachers and clas rooms, and/or schools. To 
take one example, the model ugge t that the fiscal resources of the school have 
an indirect effect on student achievement through structuraJly related teacher­
level variable uch a teaching quality and in tructional quality. 

lnpuls 
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FIGURE I. A theoretical model of the U.S. educational sy tem 
Note. From Oakes ( 1986) 
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Validating Education lndic(llors 

The purpose of this article is to propose a model-based approach for validat­
ing education indicators Lhat explicitly takes into account the organizational 
features of schooling. This approach attempts to make explicit the philosophical 
posi tion taken by de Neufville ( 1978), who wrote, "Theoretical indicators can 
also be validated by look ing at their movements in relation to indicato rs of other 
variables when an interrelationship is presumed " (p. 177). The approach advo­
cated in this article has two distinguishing components. First, this approach 
requires the selection of indicators that (a) have been theoretically and, in some 
cases, empirically linked to an outcome of interest, (b) can serve the function of 
monitoring real or simulated changes in education outcomes, and (c) can act as 
proxies for policy instruments. Second, this approach recognizes and explicitly 
accounts for the fac t that indicator data are perhaps best modeled as systems of 
structural equations operating at different levels of the educational organization. 
Spec ifically, indicator data are viewed as being generated from clustered sam­
pling schemes wherein student-level variables that predict outcomes of interest, 
such as perfonnance in science, may vary as a function of school-level differ­
ences in school climate, policies, and resources that perhaps follow their own set 
of structural relations. Thus, we will argue that the appropriate statistical meth­
odology to be utilized in specifying and estimating this type of model is 
multilevel structural equation modeling. 

The organization of this article is as follows. The next section describes the 
statistical model employed in this study. A brief description of model estimation 
will be included, and references 10 relevant technical papers on the subject will 
be provided. Following the description of the statistical model, the data source 
and variables will be described. This will be followed by the results of a 
multilevel structural model of science achievement. Next, a series of policy­
relevant simulations will be conducted in order to examine the utility of the 
model for validating education indicators. This section of the article is for 
demonstration purposes only and should not be construed as an attempt at 
serious policy analysis in the domain of science education. The article will 
conclude with a discussion of how the methodological approach developed in 
this article is consistent with a general philosophy of indicator validation. 

Statistical Modeling of Education Indicators 

Preliminary Background 

In order for indjcator systems to accurately gauge the health science education 
they must reasonably re flect the complexities of the educational system (see, 
e.g., Darling-Hammond, 1992; Oakes, 1986; Porter, 1991 ). One feature of the 
educational system that must be considered in a properly specified model is the 
multilevel organizational structure of schooling and the related fac t that data 
generated from schooling research often arise from clustered sampling schemes. 
For example, in the National Education Longitudinal Study of 1988 (National 
Center for Education Statistics [NCES], 1988) students are sampled in class­
rooms that are, in tum, sampled from schools. Extraordinary advances in school 
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process research have resulted from the application of multile1·el linear rewes­

sion methods to account for these clustered sampling schemes (see, e.g., Aitkin 
& Longford, 1986; Bock, 1989; Bryk & Raudenbush, 1992; Raudenbush & 
Willms, l 991; Willms, 1992). The benefit of applying multilevel regression 
methods to educational data is that they mitigate many of the statistical problems 
that are typically encountered when clustered sampling is ignored-specifically, 
biases arising from aggregation or disaggregation of the data (see, e.g .. Bryk & 
Raudenbush, 1992). Moreover, and of great relevance to this study, multileve l 
models allow for the estimation of cross-level effects. 

An inspection of the organizational model in Figure I suggests, however. that 
indicators are also structurally (i.e., causally) related and that modeling only the 
multilevel features of education would ignore the structural relationships within 
and between levels of the edUtcational system. To handle these types of relation­
ships, structural equation modeling is required. Structural equation modeling 
represents a major methodological breakthrough in the study of complex interre­
lationships among v,ariables (see, e.g., Bollen, 1989; Joreskog. 1977). Structural 
equation modeling embodies the unification of two methodological traditions: 
Thurstonian factor analysis originating from psychology and psychometrics, and 
simultaneous equations (path analytic) modeling originating from econometrics 
and finding its way to educational research through sociology (see, e.g., Gold­
berger & Duncan, 1973 ). 

There is no question that structural e·quation modeling has been, and continues 
to be, a popular tool in the domain of quantitative educational research. Indeed, 
with respect to testing organizational theories of schooling, early work utilizing 
structural modeling methods includes Levin {1970); Michelson (1970); Board­
man, Davis, and Sanday ( 1977); Bidwell and Kasarda ( 1975); and Cohn and 
Millman (1975). Moreover, Glasman and Biniaminov (1981), in their review of 
input-output schooling studies, proposed, but did not estimate. a structural 
model of the schooling process and alluded to the potential of such a model for 
policy studies. 

Despite the ubiquitous applicat ion of structural equation modeling in educa­
tion research, some policy analysts have argued that research on schooling may 
not be sufficiently developed 10 admit strong causal inferences (e.g., Mc Donnel I, 
1989). Others (e.g., Darling-Hammond, 1992) have expressed corcern that 
attempting to statistically assess causal relationships in cross-sectional indil'ator 
data may lead to inappropriate inferences. We argue, on the other hand, that it is 
possible to statistically capture the salient multilevel and structural relationships 
of the educarional process and incorporate them into a model-based indicator 
system through the judicious and progressive application of multilevel str11c111ra/ 

equation modeling (Muthcn. 1989. 1994; Muthen & Satorra, 1989). Multilevel 
structural equation modeling affords analysts the ability to specify a system of 
student- level equations for predicting student-level outcomes, while at the same 
time modeling variation in the student-level indicators as a function of possibly 
different systems of equations for 1hc between-classroom or be1wecn-school 
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il1dicators. We will attempt to show that multilevel structural modeling provides 
a rational quantitative strategy which, when applied to theory-generated collec­
t ions of indicators, can be used for indicator system validation. 

A Multilevel Structural Equation Model 

To simplify the discussion and prepare the groundwork for the application of 
multilevel structural equation modeling to science education indicators we will 
first assume that the indicators possess reasonably good validity and reliability. 
We recognize that this assumption may be unreasonable in most cases, but we 
hasten to point out that the model outlined below can be extended to handle the 
case where multiple measures of each construct arc obtained and integrated into 
the analysis by making use of multilevel-based measurement models (see 
Muthen, 1991, 1994). 

Consider first the within-school model. 11 is as~umed that the intercepts and 
means of the student-level indicators vary over schools and that there exists a 
model which holds at the school level that explains variation in lhe intercepts 
and means of the student-level indicators. We will also assume that the slopes 
are fixed. We begin by writing the within-school model as 

Y,g = all+ B>Y,e + E,~, {I ) 

where y,I( is a vecror of student-level indicators (e.g., science achievement, time 
spent on homework, etc.), some of which are exogenous for the ith student (i -
I ..... N) in 1he gth (g = I. . .. , G) school, °'x is a vector of parameters 
containing average values (intercep1s and means) of the student-level indicators 
which are assumed IO vary over schools, B, in a matrix of regression coefficients 
relating the student-level indicators to eac·h other. and E,~ is a dismurbance term 
for the student-level equation. 

In the language of structural equation modeling via LISREL (Joreskog & 
Sorbom, 199 l ), ( I) is referred to as an a/1-y model. In the all-y specification, all 
variables are treated as endogenous variables. Thus, yk is a p-dimcnsional 
vector of variables, where the first, say, p - q variables are endogenous 
variables, while the last q variables are exogenous variables. The remaining 
matrices are given appropriate dimensions. So, for example, the first p - q 
e lements of a ~ arc intercepts in the usual sense of 1hc word, while the last q 
e lements of a

11 
are the means of the exogenous variables. For the purposes of 

this study, the all-y specification is used to simplify the notation and does not 
rcsuh in any loss of generality. 

The model expressed in (I) is referred to as the structural form of the 
within-school part of the model and represents the statistical relationships among 
the indicators as they are deduced by the organizational model for student-level 
relationships. The direct effects are contained in the By matrix and are those that 
are 1ypically di!\played in path diagrams. For the purposes of this study we wish 
to model variation in the intercepts and means of the student-level indicators. To 
accomplish this, it is useful to reexpress (I ) in its reduced fonn as 
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(2) 

where it is assumed that the inverse of (I - B, ) exists (sec MutMn, 1994). 
As stated earlier, we assume that the leveis of the student-level indicators 

(contained in cx
11

) vary across the G schools and that this variation can be 
explained by school-level indicators. Thus, we write a between-school model for 
the intercepts and means as 

(3) 

where ex is the grand mean vector across the G schools, z1,: are school-level 
endogenous and exogenous indicators (such as the academic press of the school, 
professional teaching conditions, etc.), 80 is ai matrix of regression coefficients 
relating z

8 
to the intercepts of the student indicators, and &.~ is a vector of 

disturbances for the intercept equation. 
Up to this point the model described in (I), (2), and (3) allows intercepts and 

means to be expressed as a function of school-level indicators. This model has 
been discussed in detail in Mu then ( 1994). A unique feature of the model 
presented here is that the between-school indicators z11. are allowed to follow a 
separate between-school simultaneous equation model that can be written as 

z
11

= T + B2z8 + u11 (4) 

(see Muthen, 1994). Assuming that the inverse of (I B2 ) exists, (4) can be 
reexpressed in reduced form as 

zR = (I - BJ - 1T + (I - BJ - 1u
11

, (5) 

where T is a vector of intercepts for the schooJ-level endogenous indicators, 8 2 

is a matrix of coefficients relating school-level indicators to each other. and u_~ is 
a vector of disturbances for the school-level indicator equation. 

After a series of substitutions we arrive at the expression for the ilh student's 
score in the gth school, ta.king into account the structural relationships within as 
well as between schools. This final model can be written as 

Y;
8 

= (I - By)- 1a + IlT + Du
11 

+ (I - BY)- 16
8 
+ {I - By)- 1

E ;
8

, (6) 

where n = (I - By) - I B .. (I - B:ir I contains the regression coefficients relating 
school-level exogenous variables to student-level endogenous variables ta.king 
into account between-school structure and within-school strucrure. In structural 
equation modeling terminology, the matrix Il can be considered a m11lti/evel 
total effects matrix. 

Specific details of the estimation of the parameters of this model, as well as 
software considerations, are beyond the scope of this article (see Muthen, 1994, 
for details). Generally, though, Muthen ( 1994) considers the fol lowing three 
sample covariance matrices: (a) the total sample covariance matrix (S-r) used in 
conventional structural equation modeling, which estimates :l:w + I 8 in the 
multilevel case, where Iw and I 8 are withim- and between-group populatiom 
covariance matrices, respectively; (b) the pooled within-group sample covari-
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ance matrix (Spw), which is a consistent and unbiased estimator of I w; and (c) 
lhe sample between-grnup covariance matrix (S0); which is a consistent and 
unbiased estimator of l:w + cI 0 , where c reflects group size. 

In the case of equal within-group sample sizes, a full information maximum 
likelihood (FIML) estimator can be obtained. However, in cases of unbalanced 
data, the FIML estimator would require a term for each distinct group size. To 
remedy this, Muthen ( I 994) developed a quasi-likelihood estimator, referred to 
as MUML (Muthcn's ML-based estimator), that can be written as 

F M UML = G{ln I I w + c!.0 I + trace[(I w + c!.8) -
1S8] - In I S8 I - p } 

+ (N - G){ln I I w I + trace[I; 1Spw] - ln[Srwl - p }, (7) 

where pis the total number of variables. In the case of balanced data MUML is 
equivalent to FIML. In the unbalanced case MUML uses less infonnation but 
has been shown to give very similar result_s to FIML (Muthen, 1994). The 
MUML estimator has been shown to yield approximate chi-square distributions 
and standard errors. It should be noted that Spw and S8 can be obtained through 
standard software or through a special program written by Muthen (see Nelson 
& Mu·then, 1991) which also g ives intraclass correlations and an estimate of the 
constant c, the average group size. 1 This estimation procedure can be imple­
mented in any structural equation modeling software package that allows for 
multiple-group estimation. For this article, LISREL (foreskog & Sorbom, 1991) 
will be used. A didactic discussion specific to the model described above is 
given in Kaplan and Elliott (1997). 

For the purposes of indicator validation it is required that we obtain a 
prediction function from (6). Specifically the predicted values of the endogenous 
indicators for the ich student in the gth school are given by 

Y,g = (I - 1\)- 1« +fl,. , (8) 

where By, fl, ci, and -r are obtained from fitting the multilevel model. This 
prediction equation allows one to observe simultaneous changes in all endog­
enous indicators at both levels of the system as a function of changes in one or 
more exogenous indicators. 

Data Source, Selection of Indicators, amd Scaling 

As noted earlier, the organizational model shown in Figure I was never 
intended to be a causal model capable of estimation and testing in its totality. 
Instead, Figure I represents the conceptual links among vaguely defined groups 
of indlicators. However, Figure I does suggest relationships and direc tions of 
influence between subsets of indicators that can be incorporated into a statistical 
model for purposes of estimation, testing, and prediction. Many of these rela­
lionshjps and directions of innuence have been explicitly discussedl in, for 
example, Shavelson, McDonnell, and Oakes (1 989). One purpose of this study is 
to begin to establish statistically appropriate empirical connections between 
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measures of the indicators that represent the relationships implied by the organi­
zational model. It is not necessary that every indicator tha1 has ever been 
suggested for collection actually appear in the s tatistical model (though that does 
not mean that one would not want lO collecl as many indicato rs as possible). 
Indeed, such a model would be neither parsimonious nor useful. 

The decision regarding which indicators to include in a statistical model 
depends partly on the goals of the model. If the goal is solely that of explana­
tion, then one might want to include as many indicators as possible and estimate 
the innumerable relationships :implied by the o rganizational framework. In this 
way, one mitigates biases that are known to occur when variables are omitted 
from a model (see, e.g., Kaplan, 1988, 1989). If the goal, however, is predictive 
utility, it might be sufficient to incorporate only those indicators that have been 
suggested by the organizational model as the most influential and policy­
relevant predictors of schooling outcomes. In this case omitted variable prob­
lems are likely, and, therefore, one would not expect to obtain a statistically 
well-fitting model. In fact, it has been shown that the incorporation of small and 
nonsignificant paths in a structural model can degrade the predictive utility of 
the model when measured by single-sample cross-validation indexes (Kaplan. 
1991). Given !the tendency of analysts applying structural equa·tion modeling to 
ignore the potential usefulness of engaging in prediction and simulation (see 
Elliott & Kaplan, 1995), and given the role that indicator systems can play in 
informing education po,Jicy, we have chosen to give priority to policy relevance, 
attempting to make clear our rationale for the choice of a particular model. 
However, as will be seen below, our initial specifications have undergone minor 
modifications that bring them more in line with the data. 

Data Source 

Data for this study come from the first follow-up of the National Education 
Longitudinal Study of 1988 (NELS:88; NCES., 1988). NELS:88 is an ongoing 
study that aims to provide trend data about critical transitions experienced by 
students as they leave e lementary school and progress through high school and 
beyond. NELS:88 was designed 10 collect policy-relevant data about educational 
processes and outcomes, especially as they pertain to student learning, dropping 
out, and school effects on students' access to programs and equal opportunity to 
learn. Base-year data were collected in 1988, with planned follow-ups at 2-year 
intervals. 

The subset of students used in this study was obtained as follows. Of the 
27,994 students in the total NELS:88 sample, those students who were in l0th1 
grade during Lhe first follow-up were selected. Of those students, only those 
whose science teachers and school administrators filled out surveys were re­
tained. Next, a subset of variables (described below) was chosen from the 
student survey, the teacher survey, and the school survey to form science 
education indicators. Any missing data or multiple responses led to listwise 
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deletion of the subject from the data set. This led to a final student-level sample 
of N = 1, 165 and a school-level sample of G = 356. 

Because there were a limited number of students within classrooms, we were 
unable to estimate a three-leve l student within-classroom within-school model. 
However, it was important to include some teacher-level variables in the model. 
Therefore, a set of teacher-level variables appear in the student -leve l model. We 
recognize that because the within-school model contains data at both the student 
level and the teacher level, our results will be somewhat biased. The potential 
e ffects o f small within-school sample sizes will be discussed in the conclusion 
section of this article . 

A detailed discussion of the rationaJe behind the choice of the specific 
variables used in this study can be found in Kaplan and Elliott ( 1994) and will 
not be presented here in the interest of space. Suffice it to say that the choice of 
the following variables rests on an extensive review of the science education 
indicators literature- particularly the work of Shavelson, McDonnell, and Oakes 
(I 989) and Murnane and Raizen (1988). We clearly recognize that the adequacy 
of this model, both in terms of classical notions of statistical fit as well as 
predictive validity, rests on the choice of variables, their measurement proper­
ties, and their location in a set of simultaneous equations. With that in mind, 
what is described below is not to be construed as assessing the validity of this 
model per se, but rather to suggest an approach to validating any set of indica­
tors for which empirical and theoretical associations are presumed. 

Within-School Indicators 

Exogenous indicators. The following variables were used in the within-school 
model as exogenous variables. TIME was a teacher-level variable measuring the 
number of minutes per week the science class and lab meet. Three scales related 
to teachers' goals for the class were developed on the basis of maximum 
likelihood exploratory factor analysis.2 These were SURVIVE, measured by re­
sponses to statements such as " I am happy just to get through the day"; EMPLOY 

=- teacher focus on employable skills for the students; and TGOAL = teacher's 
goals for student understanding. In addition, a measure of teacher background 
was also included as BA= a dummy code for whether a teacher had a bachelor's 
degree in a science field (1 = yes). 

Of the exogenous indicators listed above, TIME and BA are considered policy 
relevant. The indicator TIME measures the amount o f time spent in science class 
and science lab. Below, we will alter this value and consider how o ther science 
education indicators change when the number of hours spent in science instruc­
tion is increased. The indicator BA reflects the science training of the teacher. 
Although this indicator may not be directly manipulable in the same sense that 
TIME is, it may still be of policy relevance to consider the influence of teacher 
training in science (as measured by this indicator) on other indicators of science 
education. 
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Endogenous indicator:s. The following variables were used in the within­
school model as endogenous variables. Two scales related to teachers· objectives 
were fanned on the basis of maximum likelihood exploratory factor analysis. 
These were AWARE= promoting awareness of use of science in everyday life and 
SKILLS = developing science skills. Two scales related to teachers' activities 
were formed on the basis of maximum likelihood exploratory factor analysis. 
These were DISCUSS = emphasis on science discussion, and EXPERS = emphasis 
on experiments. 

Student-level endogernous indicators included in the within-school model 
were also formed on the basis of maximum likelihood exploratory fac tor analy­
sis. These were PERCEP = student's perception of teacher's emphasis on 
problem-solving skills, CHALL= how often the student feels challenged in class, 
and UNDERST = how often the student is asked to show understanding in class. A 
measure of how well students did in their science classes was also obtained as 
GRADES = grades in science classes. Finally, tJ1e outcome of interest was SCIACH 

.. !RT-estimated number right on the NELS:88 science achievement test. Note 
that the amount of homework assigned and the time spent on homework. were 
not included in this model. Preliminary investigations revealed that there was 
virtually no variance in tJiese variables wil11 respect to the subsample used in this 
analysis. 

Betwee11-Schoo/ /11dicators 

Exogenous indicators. Seven variables were included in the between-school 
model as exogenous variables. Three variables were selected as reflecting the 
school-level resources available for quality science education (see Catterall, 
1989). These were LUNCH .. percentage of students in the school on free or 
reduced lunch programs; SALARY = lhe average difference between the highest 
and lowest reported teacher salary in the school, recoded to a 1- 8 scale; and 
CLASSGRP - dummy variable response to whether me school used homogeneous 
ability grouping in its science classes ( I = yes). 

Of the exogenous indicators listed above, LUNCH and CLASSGRP are consid­
ered of policy relevance. The indicator LUNCH is a proxy for the socioeconomic 
status of the school. Below, we will set this indicator 10 zero, to reflect only 
schools where there are no children on free or reduced lunch-that is, schools of 
upper socioeconomic status (including private schools)-and examine values o f 
science education indicators for lhese schools. The indicator CLASSGRP is a 
dummy variable reflectirng tJie school's policy on class grouping. Manipulation 
of this variable allows us 10 examine me role of class grouping on values of 
oilier indicators of science education. 

Endogenous indicators. The resource indicators were followed by three scales 
derived from a maximum likelihood exploratory factor analysis reflecting en­
dogenous indicators of the professional teaching conditions of the school. These 
were STAFCLIM = principals' response to the extent 10 which the staff explores 
new ideas. cooperate amongst themselves, help out with additional duties, and 
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share beliefs about the mission of the school; ACAEMPH = principals' response to 
the extent to which the school publicizes academic achievement and monitors 
student academic progress; and CONFLICT= principals' response l0 lhe eiuent l0 
which teachers have a negative altitude towrud students, cannot motivate stu­
dents, and have conflict with administrators. 

111e final school-leve l endogenous indicator was ACAPRESS = academic press 
of the school, measured by the principals' responses to items asking if teachers 
at the school (a) press students to achieve academically, (b) expect students to do 
homework, and (c) encourage students 10 enroll in academic classes. 

Res11.1lts 

In what follows, the separate initial and final specifications of the within­
school model will be presented first. This will be followed by the intraclass 
correlauions. The separate initial and final specification of the between-school 
model will be presented. Finally, the two separate models will be combined into 
the multilevel model. Models will be modified by using a combination of 
modification indexes and expected parameter change statistics (Saris, Satorra, & 
Sorbom. 1987; Sorbom, 1989). This method of model modification hlliS been 
suggested by Kaplan (1989, 1990a. 1990b) as a way of guiding specification 
error searches taking into account statistical power and substantive consider­
ations. 

Assu mptions underlying the use of structural equation modeling were also 
examined. In particular, the variables used for the within- and between-school 
model did not deviate in any important way from the assumption of multivariate 
normality, and thus it was felt that maximum likelihood estimation was robust in 
this case (Muthen & Kaplan, 1985, 1992). Listwise deletion was used in this 
study despite the fact that this method is known to present problems for tests of 
goodness of fit unless the missing data are missing completely at random (see, 
e.g., Muthen, Kaplan, & Hollis, 1987). This article does not attempt to explicitly 
model the problem of missing data. 

Results of Wi1hi11-School Model 

Figure 2 presents the path diagram of the initial within-school model. This 
initial specification was found not to fit the data (x2(57, N = l , 165) = 2 14 .302, p 
< .05, GFI = 0.975, AGFI - 0.954, RMSEA = 0.049, p • .599).3 A series of 
modifications were made on the basis of the modification index and the ex­
pected parameter change statistic. These modifications included freeing paths 
from TI ME to EXPERS, EMPLOY 10 DISCUSS, SKILLS to AWARE, CHALL to SCIACH, 

and CHALL to GRADES. Once these paths were free, nonsignificant paths were 
removed if they maintained the integrity of the initial model. These removals 
included the path from SURVIVE to AWARE and from TIME 10 AWARE. The final 
model, which is shown in Figure 3, was found to adequately fit the data (x\54, 
N = 1, 165) = 69.949, p = .071 , GFI = 0.99 1, AGFI = 0.9'83, RMSEA - .016, p = 
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FIGURE 2. Path diagram of initial within-school model 

1.0). The standardized direct, indirect, and total effec ts are presented in Table I. 
The system of equations describing the final within-school model are given in 
ilie Appendix. 

Betwee11-School Variation: The Intraclass Correlations 

As suggested by Mu then ( I 994) the decision to proceed with a mu I Li level 
analysis depends. in pa.rt, on the extem to which there are substantively large 
intraclass correlalions among the withim-school variables. Intraclass correlations 
provide a measure of the degree of between-school variation in the within­
school variables and, in the multilevel structural equation modeling case. are 

FIGURE 3. Path diagram of final withi11-sc/10ol model 
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TABLE I 
Direct, indirect, and total effects of within-school model: Standardized solution 

GRADES PERCEP UNDERST CHALL EXPERS DISCUSS SKILLS AWARE B,\ TGOAL EMPLOY SURVIVE TIME 

SCIACH 0.370* 0.123* 
0.065• 0.061* 0.009* - 0.003 - 0.007 - 0.002 - 0.002 0.000 0.000 -0.002 0.000 - 0.001 

0.370* 0.065* 0.184* 0.009* - 0.003 - 0.007 - 0.002 - 0.002 0.000 0.000 -0.002 0.000 -0.001 

GRADES 0.175* 0.099* 
0.066* 0.024* - 0.003 -0.006 - 0.002 - 0.001 0.000 0.000 -0.001 0.000 - 0.001 

0.175* 0.165* 0.024* - 0.003 - 0.006 - 0.002 - 0.001 0.000 0.000 -0.001 0.000 -0.001 

PERCEP 0.304* 0.135* 
0.071* - 0.009 - 0.010 -0.005 -0.003 - 0.000 - 0.000 -0.003 0.000 - 0.002 
0.375* 0.135* -0.009 -0.010 -0.005 - 0.003 - 0.000 - 0.000 - 0.003 0.000 - 0.002 

UNDERST - 0.005 -0.042 
- 0.009 0.003 - 0.009 - 0.010 0.000 0.000 - 0.009 0.001 - 0.003 
- 0.014 -0.039 - 0.009 - 0.010 0.000 0.000 - 0.009 0.001 - 0.003 

CHALL 0.527* - 0.036 0.029 
0.001 - 0.01 4 -0.016 0.004 -0.001 - 0.001 -0.001 0.001 - 0.007 

0.527 - 0.035 - 0.015 - 0.016 0.004 - 0.001 - 0.001 - 0.001 0.001 - 0.007 

EXPERS -0.238* 0.465* 0.169* 
- 0.051 * 0.012 -0.037* - 0.059* 0.033* O.o25 0.056* -0.029* 0.022 
-0.051* - 0.226* 0.427* - 0.059* 0.033* O.Q25 0.056* - 0.029* 0.191* 

DISCUSS 0.223* 0.263* 0.105* 
- 0.01 I -0.051* 0.155* - 0.013* -0.009 - 0.01 I 0.1 ()()'i - 0.010* 0.047* 

0.212* - 0.051* 0.155* 0.250* -0.009 - 0.011 0.215* - 0.010* 0.047* 

SKILLS 0.065* 0.049 0.230* - 0.067* 0.071* 

0.065* 0.049 0.230* - 0.067* 0.071* 

AWARE 0.228* - 0.078* - 0.076* 0.317* 
0.015* 0.011 0.052* - 0.015* 0.016* 

0.228* -0.064* -0.065* 0.369* - 0.015* 0.016* 

Note. For each variable in the first column. the first row of values represents direct effects. the second row of values reprc:scnts indirl'Ct eff<·cts. and the 1hird row of values 
represents total effects. 

•p < .05. 
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calculated as the ratio of the between-group variances 10 the sum of the between­
and within-group variances (see Mu then. 199 I). The combination of the within­
school data and between-school data resulted in a slight loss of data, bringing 
the within-school sample size to 1,069 and the between-school sample size to 
321. For these new data, we found that the intradass correlations for the 
variables of the withilll-school model varied between 8% and 64%. Thus. it was 
felt that the intraclass correlations were large enough to warrant a multilevel 
analysis. 

Results of Bet1v,ee11-School Model 

Before formally combining the within- and between-school models in the 
multilevel analysis, it was felt that the between-school model should be speci­
fied, estimated, and, if need be, modified separately. Figure 4 shows the path 
diagrll1111 of the Lnit ial between-school model. This model was found not to fit the 
data (x\ 6, N "' 365) = 74.20, p - .000, CF/ = 0.946, ACF! = 0.748, RMSEA = 
0.180, p < .00 l ). Two modifications were made to the initial mode l. These 
included freeing the paths from STAFCLIM to ACAEMPH and from CLASSGRP to 
ACAEMPH. These modifications resulted in a much improved fit (x2(4, N = 365) 
- 11.7 I, p = .024, GFI = 0.991, ACF!= 0.935, RMSEA = 0.074, p = . J 7 1 ). No 
other modifications were warranted on the basms of the modification index or the 
expected parameter change. No parameters were fixed on the basis of lack of 
statistical significance. The final between-school model is shown in Figure 5, 
and the standardized direct, indirect, and total effects are displayed in Table 2. 
The system of equations describing the final between-school model are shown in 
the Appendix. 

1 C:LASS 
GKOUP 

1\V(; 
·n,Al'H 
S/\1/\llY 

11,FREH 
LUNCII 

FIGURE 4. Initial betll'een-Jc/100/ model 
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FIGURES. Final be/ll'een-schoo/ model 

Results of Multilevel Analysis 

The final stage involved combining the two models into a single multilevel 
model. Again, we are assuming tJ,at the intercepts and means of the with in­
school model vary across schools and that a separate c;chool model holds which 
can account for the intercept variation. The multilevel model combines the two 
separate final models and allows paths to be estimated between the school-level 
variables and the intercepts of the within-school equations. For this model, we 
estimated the paths between ACAPRESS and the intercepts and means of the 
within-school model, with the exception of BA and TIME. This was done because 
we felt that BA and TilvtE were truly exogenous variables at the wi1hin-school 
level and outcomes of between-school variables chosen for this model. It should 
be noted that the intercepts in this model are interpreted as the expected values 
of the student-level variables given that the predictors in their respective equa­
tions are zero. Since the value of zero may not be sensible for many of these 
variables, the intercepts are not directly meaningful. Therefore, the coefficients 
relating the intercepts to the school-level variables may not be interpretable. 

The initial model was estimated in LIS REL (Joreskog & Sorbom, 1991 ). Note 
that the sample size for the within-school model is N - G .. 809. compared to N 
= 1.165 when the within-school model is analyzed separately. The initial model 
was found to fit the data as evidenced by the likeUhood ratio chi-square (x2(383, 
N8 = 356, Nw = 809) = 381.413, p = .5 13, GFJ = .987, RMSEA = 0.00. p = 1.0). 
Given the fact that the overall model shows adequate fit , and given the lack of 
substantive justification for removing these across-level paths, it was decided 
not 10 simplify the model. The standardized regression coefficients of the 
within-school intercepts on ACAPRESS are shown in Table 3. In addition to many 
paths being small and not statistically signjficant , many have signs that do not 
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TABLE 2 
Direct. indirect, and total effects of befll'een-schoo/ model: Srandardi:.ed solution 

STAFCLIM ACAEMPH CONFLICT C LASSGRP SALARY LUNCH 

ACAPRESS -0.014 0.341• - 0.212* - 0.258* 
0.103 0.011 0.032 - 0.042 
0.088 0.341• - 0.212* 0.011 0.032 - 0.300* 

STAFCLIM 0.071 0. 114* 0.014 

0.Q71 0.114* 0.014 
ACAEMPH 0.301* 0.025 0.037 - 0.017 

0.021 0.034* 0.004 
0.301 * 0.046 0.07 1 - 0.013 

CONFLICT 0.01 7 - 0.043 0.176* 

0.01 7 -0.043 0.176* 

Nore. For each variable in 1hc lir~I column, Lhc fir..1 row of values represents direc1 cffecb. 1he 
second ro w of value~ repire~em~ indirect cffect.s. and the third row of values represeni, 101al 
effects. 

•p < .05. 

make good theoretical sense. We speculate as to the reasons for this finding in 
the Summary and Conclusions section. 

Indicator Validation via Policy-Relevant Simulations 

In this section we explore the utility of the final multilevel model for indicator 
validation. Specifically. utilizing Equation 8, which gives the prediction of the 
endogenous variables from the full multilevel specification, we simulate various 
policy-relevant situations and study their effects on the NIELS:88 science 
achievement test scores. Simulations were accomplished by reading appropriate 
matrices from the output of LISREL into the SAS Interactive Matrix Language 
(PROC IML; SAS Institute Inc., 1989). 

We first consider simulations involving a change in one indicator at a time. 
This is then followed by the simultaneous cha11ge in a number of indicators at 
both levels of the system. Two points should be noted when considering the 
following resu lts. First, as discussed above, Lhe model contains certain specifica­
tion errors, as can be seen in some of the theore tically incorrect signs in Table 3. 
Second, it is important to reiterntc that these simulations are for demonstrating 
the utility of a model-based approach to indicator validation and should not be 
read as sugges.ting serious policy alternatives. Considerably more methodologi­
cal and substantive work needs to occur before this (or any) model based on this 
methodology is used for policy analysis. Given the noted caveats. the results 
presented here should be interpreted a'i predicted values of a hypothetical 
student, teacher. or school possessing particular within-school and between­
school characteristics. 
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TABLE 3 
Regression of wi1hi11-school i111ercep1s on ACAPRESS: S1a11dardi:ed soltaion 

ACAPRESS 

SCIACH 0. 11 8 
GRADES 0.261 
PERCEP -0.026 
UNOERST - 0.661 
CHALL - 0.239 
EXPERS - 0.033 
DISCUSS 0.093 
SKILLS - 0.019 
AWARE 0.101 
BAU 

TGOAL 0.101 
EMPLOY -0.023 
SlJR\' l\'E 0.150* 
Tl:<tE" 

.Vme. · variable~ treated ~ exogcnou, in the "ithin-,chool model. 

.,, < .05. 

Si11111/a1io11 0: Baseline Prediclions 

The heading Baseline in Table 4 gives the fitted values of the i Lh studeni in the 
gth school at Lhe estimated point. 1l1ese are considered the baseline values and 
should be used for comparative purposes. It should be noted that all predicted 
values are within the admissible rmges of their scales. This is an important piece 
of information regarding the quality of a model for indicator validation. Had the 
baseline values been predicted to lie outside admissible ranges then this particu­
lar model would have needed to be reexamined and perhaps funher modified to 
bring predicted values in line with known scale properties. The ability to check 
on the reasonableness of the initial predicted values is one advantage of the 
approach advocated in this article and confers a degree of confidence in future 
predictions derived from this model. 

Si111 1il111io11 I: Homogeneous Versus Heterogeneous Class Grouping 

This simulation yields a predicted achievement score for a student from a 
school that uses homogeneous grouping on the basis of science ability with the 
effects of all other indicators held constant. We contrast this with a predicted 
~core or a student from a school with heterogeneous class grouping. Simulations 
I a and I b of Table 4 show the results of this simulation. The results of Lhis 
simulation show that slightly higher levels of academic press are predicted for 
schools where homogeneous rather than heterogeneous class grouping is used. 
This appears to result in slightly higher levels of teacher-reported activities such 
as emphasis on experiments and so on, but the effect on achievement is not 
noticeably different when compared to heterogeneous class grouping. 
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TABLE 4 
Predic1ed indicator scores based on policy simulalions from the multilevel model 

Indicator Baseline Sim la Sim lb Sim 2a Sim 2b Sim 3 Sim 4 Sim 5 

SCIACH 13.161 13.161 13.159 13.160 13.161 13.157 13.228 13.225 
GRADES 2.023 2.023 2.022 2.023 2.023 2.022 2.034 2.034 
PERCEP 7.741 7.740 7.741 7.740 7.743 7.731 7.714 7.029 
CHALL 2.000 1.999 2.000 2.000 2.000 2.000 1.983 1.978 
UNDERST 3.549 3.549 3.550 3.547 3.557 3.532 3.526 3.506 
EXPERS 8.765 8.765 8.766 8.827 8.588 9.355 8.747 9.399 
DISCUSS 18.177 18.177 18.176 18.208 18.087 18.565 18.224 18.644 
SKILLS 10.237 10.237 10.237 10.377 9.833 10.697 10.227 10.828 
AWARE 2.749 2.749 2.749 2.747 2.755 2.778 2.755 2.784 
s,, 0.741 0.741 0.741 I u O' 0.741 0.741 I" 
TGOALS 3.601 3.601 3.600 3.601 3.600 3.601 3.617 3.617 
EMPLOY 1.848 1.848 1.848 1.848 1.847 1.848 1.845 1.845 
SURVIVE 0.866 0.866 0.866 0.866 0.866 0.866 0.887 0.887 
TIME 4.712 4.712 4.71 2 4.712 4.712 6.696" 4.712 6.7W" 
ACAPRESS 7.099 7.104 7.088 7.099 7.099 7.099 7.549 7.554 
STAFCLJM 4.572 4.620 4.478 4.572 4.572 4.572 4.554 4.602 
ACAEMPH 7.426 7.456 7.365 7.426 7.426 7.426 7.426 7.456 
CONFLICT 3.468 3.489 3.426 3.468 3.468 3.468 3.066 3.087 
CLASSGRP 0.667 1• o• 0.667 0.667 0.667 0.667 o·· 
SALARY 3.751 3.751 3.751 3.751 3.751 3.751 3.751 3.751 
I .UNCH 1.408 1.408 1.408 1.408 1.408 1.408 OJ 1.408 

Note. ' Manipulated policy instruments: sec t.:xt. 
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Simulation 2: Teachers With or Without an Undergraduate Degree in Science 

This simulation examines the predic ted effect of teacher educational back­
ground on the endogenous indicators of the model. Specifically we study 
whether a teacher having a bachelor's degree in a science discipline exerts any 
marginal effect on predictors of science achievement and on science achieve­
ment directly with the effects of all other indicators held constant. The results of 
these simulations arc given in Simulations 2a and 2b of Table 4. The results 
show that having a bachelor's degree versus not having a bachelor's degree does 
not change the predicted value of science achievement or its determinants within 
this model. 

Simulation 3: Increase in Time Spent in Science Instruction 

This simulation examines tl1e effect of increasing the total time tlle science 
class meet!> (lecture plus lab) by 2 hours. The res ults are shown in Simulation 3 
of Table 4. Here it can be seen tllat an incre·ase of 2 hours leads 10 small but 
noticeable changes m the predic ted values of the indicators relative 10 the 
base line results of Simulation 0. The changes appear to be most noticeable with 
respect to teacher-reported activuies of emphasizing experiments and discussion 
and teacher-reponcd objectives of increasing skills and awareness. The predicted 
values are above baseline, as one might eApcct. Nevertheless, an increase of 2 
hours has virtually no effect on science achievement as measured in NELS:88. 

Simula1io11 4: Schools With Different Percentages of Stude111s 0 11 Free or 
Reduced lunch 

This simulation studies the predicted values of indicators for the ith student in 
the gth school where tllere are no students on free or reduced lunch, holding all 
oilier effects constant. The results are presented in Simula1ion 4 of Table 4. It 
can be seen that schools with zero students on free or reduced lunch report 
slightly lower predicted conflict and slightly higher academic press in the 
school. However. this simulation shows very little effect on within-school indi­
cators, especially science achievement. 

Simulation 5: Simultaneous Change in Three Variables 

This simulation studies the simultaneous effect of changes in three indicators: 
(a) heterogeneous c lass grouping, (b) teachers with bachelor 's degrees in a 
science discipline, and (c) an increase of 2 hours in the total time a science c lass 
meets. All other effects arc he ld constant at their estimated values. The results 
are shown in Simulation 5 of Table 4. Here it can be seen that the combined 
effec t of these changes is predicted increases in many, but not all, of tlle 
within-school indicators. In particular, a small predicted increase in science 
achievement is observed. A predicted increase in teacher-reported emphasis on 
science experiments, science discussion, and science awareness is also observed 
under this scenario. 
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Summary and Conclusions 

The purpose of this article was to demonstrate the utility of a model-based 
approach to education indicator validation. To illustrate the approach, a multi­
level model of science achievement based on a specification arising from the 
indicator systems literature was applied to the first follow-up of NELS:88. 
Scales reflecting indicators that were suggested to be important for monitoring 
the heal th of science education within and between schools were incorporated 
into the model. The model was fou nd to have adequate fit to the data when the 
levels of the within-school indicators were allowed to be predicted by all 
between-school indicators. It should be pointed out that the observed effects in 
this study were quite small overall, owing partly to the fact that the NELS:88 
test has too few items to be sensitive to school or classroom instructional 
indicators (see also Carey & Shavelson, 1989). Another reason for the small 
observed changes lies in the fact that the effects of the between-school variables 
on the within-school intercepts were very small. Thus, despite the fact that the 
intraclass correlations suggested the appropriateness of a multilevel model, the 
actual cross-level effects appeared negligible. 

A number of methodological issues must be considered when interpreting the 
results of this study. First, as noted above, the signs of many of the coefficients 
reported in Table 3 do not make theoretical sense. The most probable explana­
tion for tbjs findi ng has to do with specification errors in the cross-level part of 
the model. In tbjs example, all cross-level effects were from the between-school 
measure of academic press to the intercepts of the within-school variables. A 
major advantage to the modeling methodology advocated in this article (com­
pared to standard multilevel regression) is that it allows effects in the opposite 
direction to be specified and estimated. That is, one can examine the influence of 
average student-level grades, say, on the academk press of the school. ln 
addition, simultaneous cross-level effects can also be specified. However, with 
respect to this model, inspection of the modification indexes and expected 
parameter change statistics did not reveal the necessity of estimating those 
effects. Second, the unequaJ within-school sample sizes may also be contribut­
ing to the fi nding of small and nonsignificant cross-level effects. The influence 
of unequal sample sizes on cross-level effect estimation in multilevel structural 
models remains an open area of research. Third, the present investigation does 
not provide confidence intervals around the predicted values. The incorporation 
of prediction intervals is essential for a proper assessment of the precision of the 
estimates, especially if the model is to be used for indicator validation. With 
regard to the model used here, simultaneous prediction intervals from the 
reduced form of a multilevel model would be required. This also remains an 
open area of research. 

Some substantive concems must also be considered. Problems with the multi­
level estimates may be due to the fact that this model of academic press is not 
the correct explanatory model for variation in the within-school indicato rs. That 
is, while the within-school and between-school models showed adequate statis-
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tical fit to their respective data, there may be no necec;sary relationship between 
Lhe two. Again, the purpose of this artkle was not to argue for this model per se. 
but rather to argue for a model-based approach to indicator validation. An 
important benefit that can accrue from this modeling exercise. however. is the 
insight it can provide for theory building. Assuming that the methodological 
problems listed above were addressed, and a reanalysis led to similar findings, 
0111e might be compelled to reexamine the role of the academic press of the 
school as it pertains 10 teacher behavior and student outcomes. In addition to 
valuable information for indicator development, such an investigation would 
also lead to the progressive elaboration of a theory of schooling. 

These methodological and substantive concerns notwithstanding, a unique 
feature of this article was the explicit attempt at estimating empirical associa­
tions among indicators within and between levels of the educational system. 
Rather than simply collecting indicators guided by the organizational framework 
and using them for reporting descriptive statistics. this article successfully 
demonstrates that it is possible to employ multileve l slructural modeling meth­
ods 10 capture the salient relationships among science education indicators based 
on an organizational model of schooling wherein such relationships are implied. 
The type of modeling activity advocated in this article, we argue, is consistent 
with de Neufville 's ( 1978) notions of the theoretical validity o f indicators. 
Specifically, the simulation approach advanced in this article could be consid­
ered a type of quasi-experimental validity test ( de Neufville, 1978. p. 178) for 
the selection of indicators, wherein one can observe how indicators change in 
response 10 changes in other indicators embedded within an explicit model of 
the educational system. Our results, though quite tentative, demonstrate the 
potential ulility of a model-based approach to indicator validation and suggest 
that indicator data can be collected and organized into a quantitative model that 
can be used, in conjunction with other modes of inquiry, to inform policy 
directed toward indicator development. 

Notes 
1 This software program is also downloadable from Muthen 's World Wide Web page. 

It can be accessed at hup://www.gse.ucla.edu/facpage/muthen.htmV. 
2 In each case a variety of alternative factor structures with oblique rotation were 

explored. The criterion for choos ing the number of factors was based on the change in the 
chi-square gocxlncss of fit when the number of factors changed , as well as substamive 
significance and interpretability of the factor loadings. Scales were fonned by unit 
weighing variables that loaded appreciably on the factors. These scales define the 
indicators under investigation. 

•
1 The statistic x2 refers 10 the likelihood ratio chi-~quare. TI1e GFI, AGFI, and RMSEA 

are alternative fit indexes and stand for goodness-of-fi t index. adjusted goodness-of-fit 
index, and root mean square error of approximation, respectively (see Bollen. 1989; 
Bo llen & Long, 1993, for details). 
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APPENDIX 
Final Within-School Model Equation. 

SCIACH - a. + ~ YI> (GRADES)+ ~ )'IS (UNDERST) + e ,, 
GRADES - a 2 + ~ Yn (PERCEP) + ~Yu (UNDERST) + e2• 

PERCEP • a3 + ~ y,. (CHALL) + ~ Yu (UNDERST) + e3, 

CHALL • a 4 + 131.., (UNDERST) + 13, .. (EXPER) + 131., (DISCUSS) + € 4 • 

UNDERST - a.s + 13,l<, (EXPER) + 13n, (DISCUSS) + €.s, 
EXPER - a 6 + ~y., (DISCUSS) + 13161 (SKlLLS) + l3Y•" (TIME) + e6 , 

DISCUSS - 0.7 + 13m (EXPER) + 13m (AWARE) + 13,.,.11 (EMPLOY) + E7. 

SKILLS - as + 1311.10 (BA) + 1311 II (EMPLOY) + 13) .II (SURVIVE) + 13)., ... (TIME) + E.g. 

;,~;}··~::.:.~~AU) + ~ho> ,,~cov) + ~~ .. (TIME) + ~. 

SURVIVE 

TIME 

Final Between-School Model Equations 

ACAPRESS - T1 + l3l12 (STAFFOEV) + l3,11 (ACAEMPH) 

+ 13l,. (CONFI..ICT) + 13,,, (LUNCH) + u., 
STAFFDEV - -r2 + 13.:n (CLASSGRP) + 13,,. (SALARY)+ 13.:n (LUNCH)+ u2 , 

ACAEMPH - T3 + f3 l,, (STAFFDEV) + 13,,, (ACAEMPH) + 13,,, (CLASSGRP) 

+ l3~ (SALARY)+ 13,17 (LUNCH) + u,. 
CONFLICT - T4 + 13.._, ( LASSGRP) + 13.,. (SALA RY)+ f3l-<, (LUNCH) + u4 , 

CLASSGRP } 
SALARY Exogenous 
LUNCH 
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